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ABSTRACT
Topic Detection and Tracking (TDT) is a DARPA-sponsored initia-
tive to investigate the state of the art in finding and following new
events in a stream of broadcast news stories. The TDT problem con-
sists of three major tasks: (1) segmenting a stream of data, especially
recognized speech, into distinct stories; (2) identifying those news
stories that are the first to discuss a new event occurring in the news;
and (3) given a small number of sample news stories about an event,
finding all following stories in the stream.

The TDT Pilot Study ran from September 1996 through October
1997. The primary participants were DARPA, Carnegie Mellon
University, Dragon Systems, and the University of Massachusetts
at Amherst. This report summarizes the findings of the pilot study.

The TDT work continues in a new project involving larger training
and test corpora, more active participants, and a more broadly de-
fined notion of “topic” than was used in the pilot study.
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1. Overview

The purpose of the Topic Detection and Tracking (TDT) Pi-
lot Study is to advance and accurately measure the state of
the art in TDT and to assess the technical challenges to be
overcome. At the beginning of this study, the general TDT
task domain was explored and key technical challenges were
clarified. This document defines these tasks, the performance
measures to be used to assess technical capabilities and re-
search progress, and presents the results of a cooperative in-
vestigation of the state of the art.

1.1. Background

The TDT study is intended to explore techniques for detect-
ing the appearance of new topics and for tracking the reap-
pearance and evolution of them. During the first portion of
this study, the notion of a “topic” was modified and sharp-
ened to be an “event”, meaning some unique thing that hap-
pens at some point in time. The notion of an event differs
from a broader category of events both in spatial/temporal
localization and in specificity. For example, the eruption of
Mount Pinatubo on June 15th, 1991 is consider to be an event,
whereas volcanic eruption in general is considered to be a
class of events. Events might be unexpected, such as the erup-
tion of a volcano, or expected, such as a political election.

The TDT study assumes multiple sources of information, for
example various newswires and various news broadcast pro-
grams. The information flowing from each source is assumed
to be divided into a sequence of stories, which may provide
information on one or more events. The general task is to
identify the events being discussed in these stories, in terms
of the stories that discuss them. Stories that discuss unex-
pected events will of course follow the event, whereas stories
on expected events can both precede and follow the event.

The remainder of this section outlines the three major tasks of
the study, discusses the evaluation testbed, and describes the
evaluation measures that were used. Section presents the ap-
proaches used by the study members to address the problem
of text segmentation and discusses the results. The detection
task is taken up and similarly described in Section . Sec-
tion presents the approaches and results of the tracking task,
including a brief section on tracking using a corpus created
from speech recognition output.

1.2. The Corpus

A corpus of text and transcribed speech has been developed
to support the TDT study effort. This study corpus spans the
period from July 1, 1994 to June 30, 1995 and includes nearly
16,000 stories, with about half taken from Reuters newswire
and half from CNN broadcast news transcripts. The tran-
scripts were produced by the Journal of Graphics Institute
(JGI). The stories in this corpus are arranged in chronolog-
ical order, are structured in SGML format, and are available



from the Linguistic Data Consortium (LDC).1

A set of 25 target events has been defined to support the TDT
study effort. These events span a spectrum of event types
and include both expected and unexpected events. They are
described in some detail in documents provided as part of
the TDT Corpus. The TDT corpus was completely anno-
tated with respect to these events, so that each story in the
corpus is appropriately flagged for each of the target events
discussed in it. There are three flag values possible: YES
(the story discusses the event), NO (the story doesn’t dis-
cuss the event), and BRIEF (the story mentions the event
only briefly, or merely references the event without discus-
sion; less than 10% of the story is about the event in ques-
tion). Flag values for all events are available in the file
tdt-corpus.judgments .2

1.3. The Tasks

The Topic Detection and Tracking Study is concerned with
the detection and tracking of events. The input to this pro-
cess is a stream of stories. This stream may or may not be
pre-segmented into stories, and the events may or may not
be known to the system (i.e., the system may or may not be
trained to recognize specific events). This leads to the defini-
tion of three technical tasks to be addressed in the TDT study.
These are namely the tracking of known events, the detection
of unknown events, and the segmentation of a news source
into stories.

The Segmentation Task The segmentation task is defined
to be the task of segmenting a continuous stream of text (in-
cluding transcribed speech) into its constituent stories. To
support this task the story texts from the study corpus will be
concatenated and used as input to a segmenter. This concate-
nated text stream will include only the actual story texts and
will exclude external and internal tag information. The seg-
mentation task is to correctly locate the boundaries between
adjacent stories, for all stories in the corpus.

The Detection Task The detection task is characterized by
the lack of knowledge of the event to be detected. In such
a case, one may wish to retrospectively process a corpus of
stories to identify the events discussed therein, or one may
wish to identify new events as they occur, based on an on-line
stream of stories. Both of these alternatives are supported
under the detection task.

Retrospective Event Detection The retrospective detection
task is defined to be the task of identifying all of the events
in a corpus of stories. Events are defined by their association

1Linguistic Data Consortium Telephone: 215 898-0464 3615 Market
Street Fax: 215 573-2175 Suite 200 ldc@ldc.upenn.edu Philadelphia, PA,
19104-2608, USA.http://www.ldc.upenn.edu

2Only values of YES and BRIEF are listed, thus reducing the size of the
judgment file by two orders of magnitude. (The vast majority of stories have
flag values of NO for all events.)

with stories, and therefore the task is to group the stories in
the study corpus into clusters, where each cluster represents
an event and where the stories in the cluster discuss the event.
It will be assumed that each story discusses at most one event.
Therefore each story may be included in at most one cluster.3

On-line New Event Detection The on-line new event detec-
tion task is defined to be the task of identifying new events in
a stream of stories. Each story is processed in sequence, and
a decision is made whether or not a new event is discussed
in the story, after processing the story but before processing
any subsequent stories). A decision is made after each story
is processed. The first story to discuss an event should be
flagged YES. If the story doesn’t discuss any new events, then
it should be flagged NO.

The Tracking Task The tracking task is defined to be the
task of associating incoming stories with events known to the
system. An event is defined (“known”) by its association with
stories that discuss the event. Thus each target event is de-
fined by a list of stories that discuss it.

In the tracking task a target event is given, and each succes-
sive story must be classified as to whether or not it discusses
the target event. To support this task the study corpus will be
divided into two parts, with the first part being the training
set and the second part being the test set. (This division is
different for each event, in order to have appropriate training
and test sets.) Each of the stories in the training set will be
flagged as to whether it discusses the target event, and these
flags (and the associated text of the stories) will be the only
information used for training the system to correctly classify
the target event. The tracking task is to correctly classify all
of the stories in the test set as to whether or not they discuss
the target event.

A primary task parameter is the number of stories used to de-
fine (“train”) the target event,Nt. The division of the corpus
between training and test will be a function of the event and
the value ofNt . Specifically, the training set for a particular
event and a particular value ofNt will be all of the stories up
to and including theN th

t story that discusses that event. The
test set will be all subsequent stories.

1.4. The Evaluation

To assess TDT application potential, and to calibrate and
guide TDT technology development, TDT task performance
will be evaluated formally according to a set of rules for each

3While it is reasonable that a story will typically discuss a single event,
this is not always the case. In addition to multifaceted stories, there are also
overlapping events. For example, in the case of the TDT study’s corpus and
target events, there are 10 stories that have a YES or BRIEF tag for more than
one event. One of these (story 8481) has a YES tag for two events (namely
Carter in Bosnia and Serbs violate Bihac). Nonetheless, the assumption that
each story discusses only one event will be used, because it is reasonable for
the large majority of stories and because it vastly simplifies the task and the
evaluation.



of the three TDT tasks. In these evaluations, there will be
numerous conditions and questions to be explored. Among
these are:

� How does performance vary when processing different
sources and types of sources?

� How does selection of training source and type affect
performance?

In general evaluation will be in terms of classical detection
theory, in which performance is characterized in terms of two
different kinds of errors, namely misses (in which the target
event is not detected) and false alarms (in which the target
event is falsely detected). In this framework, different events
will be treated independently of each other and a system will
have separate outputs for each of the target events.

2. Segmentation
The segmentation task addresses the problem of automat-
ically dividing a text stream into topically homogeneous
blocks. The motivation for this capability in this study arises
from the desire to apply event tracking and detection tech-
nology to automatically generated transcriptions of broadcast
news, the quality of which have improved considerably in
recent years. Unlike newswire, typical automatically tran-
scribed audio data contains little information about how the
stream should be broken, so segmentation must be done be-
fore further processing is possible. Segmentation is there-
fore an “enabling” technology for other applications, such as
tracking and new event detection.

Given the nature of the medium, “topically homogeneous
blocks” of broadcast speech should correspond to stories,
hence a segmenter which is designed for this task will find
story boundaries. The approaches described below, however,
are quite general; there is no reason that the same technol-
ogy, suitably tuned, cannot be applied to other segmentation
problems, such as finding topic breaks in non-news broadcast
formats or long text documents.

There is a relatively small but varied body of previous work
that has addressed the problem of text segmentation. This
work includes methods based on semantic word networks
[10], vector space techniques from information retrieval [7],
and decision tree induction algorithms [11]. The research on
segmentation carried out under the TDT study has led to the
development of several new and complementary approaches
that do not directly use the methods of this previous work,
although all of the approaches share a common rationale and
motivation.

2.1. Evaluation

Segmentation will be evaluated in two different ways. First,
segmentation will be evaluated directly in terms of its abil-

ity to correctly locate the boundaries between stories. Sec-
ond, segmentation will be evaluated indirectly in terms of its
ability to support event tracking and preserve event tracking
performance.

For the segmentation task, all of the TDT study corpus will
be reserved for evaluation purposes. This means that any ma-
terial to be used for training the segmentation system must
come from sources other than the TDT study corpus. Also,
the nature of the segmentation task is that the segmentation is
performed on a single homogeneous data source. Therefore,
for the purpose of evaluating the segmentation task, segmen-
tation will be performed not only on the TDT Corpus as a
whole, but also on its two separate sub-streams–one compris-
ing just the Reuters stories, and the other comprising just the
CNN stories. In addition, the segmentation task must be per-
formed without explicit knowledge of the source of the text,
whether from newswire or transcribed speech.

Direct Evaluation of Segmentation Segmentation will be
evaluated directly using a modification of a method suggested
by John Lafferty.4

This is an ingenious method that avoids dealing with bound-
aries explicitly. Instead, it measures the probability that two
sentences drawn at random from the corpus are correctly clas-
sified as to whether they belong to the same story. For the
TDT study, the calculation will be performed on words rather
than sentences.5 Also, the error probability will be split into
two parts, namely the probability of misclassification due to
a missed boundary (a “miss”), and the probability of misclas-
sification due to an extraneous boundary (a “false alarm”).
These error probabilities are defined as

Pmiss =

PN�k

i=1 �hyp(i; i+ k) � (1� �ref (i; i+k))PN�k

i=1 (1� �ref (i; i+ k))

PFalseAlarm =

PN�k

i=1 (1� �hyp(i; i+ k)) � �ref (i; i+k)PN�k

i=1 �ref (i; i+ k)

where the summations are over all the words in the corpus
and where

�(i; j) =

�
1 when wordsi andj are from the same story
0 otherwise

Choice ofk is a critical consideration in order to produce a
meaningful and sensitive evaluation. For the TDT study cor-
pus,k will be chosen to be half the average document length,
in words, of the text stream on which we evaluate (about 250
for the TDT Corpus, for example).

4“Text Segmentation Using Exponential Models”, by Doug Beeferman,
Adam Berger, and John Lafferty.

5There are several reasons for using words rather than stories. First, there
will likely be less debate and fewer problems in deciding how to delimit
words than how to delimit sentences. Second, the word seems like a more
suitable unit of measurement, because of the relatively high variability of the
length of sentences.



Indirect Evaluation of Segmentation Segmentation will
be evaluated indirectly by measuring event tracking perfor-
mance on stories as they are defined by automatic segmen-
tation means. A segment will contribute to detection errors
proportionate to how it overlaps with stories that would con-
tribute to the error rates. Details of this evaluation are pre-
sented in Section in the tracking chapter.

2.2. Dragon Approach

Theory Dragon’s approach to segmentation is to treat a
story as an instance of some underlying topic, and to model
an unbroken text stream as an unlabeled sequence of these
topics. In this model, finding story boundaries is equivalent
to finding topic transitions.

At a certain level of abstraction, identifying topics in a text
stream is similar to recognizing speech in an acoustic stream.
Each topic block in a text stream is analogous to a phoneme
in speech recognition, and each word or sentence (depend-
ing on the granularity of the segmentation) is analogous to
an “acoustic frame”. Identifying the sequence of topics in
an unbroken transcript therefore corresponds to recognizing
phonemes in a continuous speech stream. Just as in speech
recognition, this situation is subject to analysis using classic
Hidden Markov Model (HMM) techniques, in which the hid-
den states are topics and the observations are words or sen-
tences.

More concretely, suppose that there arek topicsT (1), T (2),
. . . , T (k). There is a language model associated with each
topicT (i), 1 � i � k, in which one can calculate the prob-
ability of any sequence of words. In addition, there are tran-
sition probabilities among the topics, including a probability
for each topic to transition to itself (the “self-loop” probabil-
ity), which implicitly specifies an expected duration for that
topic. Given a text stream, a probability can be attached to
any particular hypothesis about the sequence and segmenta-
tion of topics in the following way:

1. Transition from the start state to the first topic, accumu-
lating a transition probability.

2. Stay in topic for a certain number of words or sen-
tences, and, given the current topic, accumulate a self-
loop probability and a language model probability for
each.

3. Transition to a new topic, accumulating the transition
probability. Go back to step 2.

A search for the best hypothesis and corresponding seg-
mentation can be done using standard HMM techniques and
standard speech recognition tricks (using thresholding if the
search space gets too large, for example).

Implementation Details Since the entire TDT Corpus is set
aside for evaluation, training data for a segmenter must come
from other sources. One such source available to all sites
is the portion of Journal Graphics data from the period Jan-
uary 1992 through June 1994. This data was restricted to the
CNN shows included in the TDT Corpus, and stories of fewer
than 100 and more than 2,000 words were removed. This left
15,873 stories of average length 530 words. A global unigram
model consisting of 60,000 words was built from this data.

The topics used by the segmenter, which are referred to as
backgroundtopics, were constructed by automatically clus-
tering news stories from this training set. The clustering was
done using a multi-passk-means algorithm that operates as
follows:

1. At any given point there arek clusters. For each story,
determine its distance to the closest cluster (based on the
measure described below), and if this distance is below a
threshold, insert the story into the cluster and update the
statistics. If this distance is above the threshold, create a
new cluster.

2. Loop through the stories again, but now consider switch-
ing each story from its present topic to the others, based
on the same measure as before. Some clusters may van-
ish; additional clusters may need to be created. Repeat
this step as often as desired.

The distance measure used in the clustering was a variation
of the symmetric Kullback-Leibler (KL) metric:

d =
X
n

(sn=S) log
sn=S

(cn + sn)=(C + S)

+
X
n

(cn=C) log
cn=C

(cn + sn)=(C + S)
;

wheresn andcn are the story and cluster counts for wordwn,
with S =

P
sn andC =

P
cn.

A background topic language model was built from each clus-
ter. To simplify this task, the number of clusters was limited
to 100 and each topic was modeled with unigram statistics
only. These unigram models were just smoothed versions of
the raw unigram models generated from the clusters. Smooth-
ing each model consisted of performing absolute discounting
followed by backoff to the global unigram model. The uni-
gram models were filtered against a stop list to remove 174
common words.

Decoding of text was done by actually using code from a
speech recognizer with 100 underlying “single node” models
(corresponding to the topics), each of which was represented
by a unigram model as described above. As in speech, the
text was scored against these models oneframeat a time –



a frame corresponding, in these experiments, to a sentence.
The topic-topic transition penalties were folded into a single
number, the topic-switch penalty, which was imposed when-
ever the topic changed between frames/sentences.

The topic-switch penalty was tuned to produce the correct
average number of words per segment on the first 100 stories
from the test set. There are no other parameters to tune except
the search beam width, which was set large enough to avoid
search errors in the experiments.

Results

TDT Corpus. The segmentation error metric computed for
Dragon’s system on the full TDT Corpus was 12.9%. The
segmenter produced 16,139 story boundaries, compared to
the 15,863 actual boundaries in the test set. Of these, 10,625
were exact matches, yielding a recall rate of 67.0% and a pre-
cision of 65.8%.

CNN vs. Reuters. One might expect that, because the data
used to train the segmenter’s background models was taken
entirely from CNN broadcasts, the performance of the seg-
menter on the CNN portion of the TDT Corpus would be sig-
nificantly better than its performance on the Reuters portion.
To explore this, Dragon ran the evaluation separately on the
two subcorpora. The system returned a segmentation error of
16.8% (worse than for the corpus as a whole!) on CNN, and
an error of 12.3% (better!) on Reuters.

The most likely explanation for this anomaly is that the CNN
is more difficult than Reuters for a content-based segmenter
such as Dragon’s. For example, written news tends to be
more concise than broadcast news, with none of the typi-
cal “broadcast fillers”, such as introductions, greetings, and
sign-offs. It is also the case that the length of CNN stories
varies much more widely than Reuters stories, a problem for
this segmenter, which has a single parameter controlling for
length.

TWA Corpus. The closed-caption version of the corpus
contains punctuation marks, making it possible to introduce
sentence breaks in the usual way. The recognized transcrip-
tions, of course, contain no punctuation, so breaks were in-
troduced at arbitrary points in the segments in such a way as
to produce approximately the same number of “sentences” as
in the closed-caption case.

On the closed-caption data, the segmenter returned a segmen-
tation error of 25.5%. On the recognized data the error was
33.6%. The size of these numbers suggests that the problem
of segmenting broadcasts may be harder than the TDT Cor-
pus leads us to believe. In any event, it would be interesting
to calibrate these error rates against the result on a clean tran-
scription of the TWA Corpus.

The Future It is remarkable that this simple application of
HMM techniques to segmentation and tracking achieves such

promising results. This work represents just the beginning
of what can be achieved with this approach; many improve-
ments are possible, both by incorporating ideas found in im-
plementations at the other sites and from generalizations of
the techniques already employed.

In particular, some form of story modeling that attempts to
recognize features around boundaries, which both UMass and
CMU incorporate into their systems, should be incorporated
into Dragon’s framework. One way to do this, which contin-
ues in the spirit of the speech recognition analogy, is to use
“multi-node” story models, in which a story is modeled as a
sequence of nodes (for example, one which models the story
start, one which models the middle, and one which models
the end) rather than a single topic model.

It is also possible to improve the topic modeling that already
forms the basis of the segmenter. Some methods of achieving
this include using bigram models in place of unigram models
for topics, including a “trigger model” of the kind employed
by CMU, and adaptively training the background during seg-
mentation. It is also likely that the basic speech-inspired lan-
guage models can be improved by incorporating information
retrieval measures that are more informed about topic infor-
mation, such as the local context analysis used by UMass.

2.3. UMass Approach

Content Based LCA Segmentation UMass has developed
two largely complementary segmentation methods. The first
method makes use of the technique of local context analy-
sis (LCA) [16]. LCA was developed as a method for auto-
matic expansion of ad hoc queries for information retrieval.
It is somewhat like the method of local feedback [5] but has
been shown to be more effective and more robust. For the
segmentation task, LCA can be thought of as an association
thesaurus which will return words and phrases which are se-
mantically related to the query text and are determined based
on collection-wide co-occurrence as well as similarity to the
original sentence. Each sentence is run as a query against the
LCA database and the top 100 concepts are returned. The
original sentence is then replaced with the LCA concepts and
the effect is that sentences which originally had few or per-
haps no words in common will typically have many LCA con-
cepts in common.

The original LCA method was derived from that described in
[12]. The text is indexed at the sentence level using offsets to
encode the positions of the LCA features. For example, sup-
pose the feature “O. J. Simpson” occurs in sentence 1, 3, and
10. The index will encode these positions as 1, 2 and 7, the
offset from the previous occurrence of the concept. The main
idea of the LCA segmenter is to use these offsets to measure
shifts in vocabulary over time. The original method, which
was tested on the Wall Street Journal, used a simple func-
tion of the offsets as a heuristic measure of the “surprise”



of seeing a particular concept in a particular sentence. In
a homogeneous collection such as the Wall Street Journal,
this heuristic, in conjunction with LCA expansion, worked
quite well. However, the TDT Corpus has stories from sev-
eral sources and so it often happens that several stories on
the same topic will occur in close proximity. Moreover, since
the TDT Corpus consists of transcribed speech, there is far
more off-topic language than in the Wall Street Journal. For
example, throughout the corpus, one finds social interaction
between speakers which does not relate to the current topic.
These two difficulties were circumvented by means of an ex-
ponential length model. Rather than looking at the total size
of the offset, a model of the average segment size was used.
The model was used to determine the probability that an oc-
currence of a concept was in the same segment as the previ-
ous occurrence. This method is more robust with respect to
multiple stories on same topic and to “social noise” than the
original method and performance is improved.

The LCA method can be thought of as a content-based
method. It works by looking at changes in content-bearing
words. It is somewhat similar to the topic models used in
Dragon’s method and to the relevance features in CMU’s
method. The strong point of the LCA method is that, other
than the length model estimation, it is completely unsuper-
vised. One weakness of this method is that the current im-
plementation is somewhat slow since it requires a database
query per sentence. However, it could be sped up consider-
ably using standard information retrieval query optimization
techniques. A second weakness is that performance of the
LCA expansion currently requires sentence breaks. A modifi-
cation of this approach would be to use a fixed-sized window
rather than sentences as the atomic unit for expansion.

Discourse Based HMM Segmentation The second seg-
mentation method uses a Hidden Markov Model to model
“marker words,” or words which predict a topic change. The
model consists of one or more states for the firstN sentences
of a segment, one or more for the lastN sentences, and one
or more for the remainder of the segment. So while the LCA
segmenter relies on shifts in content, the HMM segmenter is
relying on words which predict the beginning or end of a seg-
ment without regard to content. This is somewhat similar to
CMU’s use of vocabulary features. The model is trained us-
ing segmented data. Unknown word probabilities were han-
dled with a very simple smoothing method.

Additional Features. In addition to the word probabilities,
other features were modeled. These included sentence length
(which would be implicit in a word based segmenter), serial
clustering tendency [3], and distance from previous occur-
rence. Each of these features was measured as a standard
score, and state probabilities were estimated from the train-
ing data. These three features yielded a very slight improve-
ment over the words alone. Part of the reason why they did

not help more is that, in the first place, the distributions of the
features are far from normal and, secondly, most of the data
points cluster around the mean. This suggests that an adaptive
binning technique would work better than using standardized
scores.

In order to shed some light on this conjecture, all of the
data points lying more than one standard deviation from the
mean were discarded and a new mean and standard deviation
were computed and the scores restandardized. This admit-
tedly poor modification yielded a modest improvement over
the initial standard scores and therefore suggests that adap-
tive binning would be appropriate. However, it is not known
to what extent the results would improve from better binning.

One advantage of the HMM implementation is that it is very
fast. Training time is approximately 15 minutes on the TDT
training corpus and segmentation is extremely fast as one
would expect from an HMM with a small number of states.
Also, unlike the LCA method, the HMM method can be used
at the word level (although the current implementation works
at the sentence level). The disadvantage of the HMM method
is that it requires segmented training data.

Results and Discussion

LCA Method. The LCA segmenter achieves a 17.6% error
rate on the TDT Corpus. The new method is still heuris-
tic in nature and a more principled use of the LCA con-
cepts would, in all likelihood, improve performance further.
Two additional improvements could be made to the LCA ap-
proach. First, one difficulty with the LCA method is that
when one gives a query to LCA such as “Thank you and
good-night,” the concepts one gets back are essentially ran-
dom. The current method is fairly robust with respect to a
reasonable amount of random noise, but perhaps a better ap-
proach would be to model the noise words and not pass them
to LCA at all. The second approach is to make use of the
discourse features as well. This is discussed further below.

HMM Method. The HMM segmenter has a 23% error rate
on the TDT Corpus. One caveat is that this approach may rely
on the similarity of the training data to the test data somewhat
heavily. Still, it shows that very simple discourse modeling
can provide useful information. This method could be made
more robust by explicitly modeling “segues” and other regu-
larities of the source. For example, it would be more general
to tag place names and names of reporters and to learn the
probability of segment boundaries relative to the tags rather
than to the specific names as the current approach does.

The Future One obvious question is to what extent a hybrid
approach would improve performance over either method
alone. For example, one could use an HMM based segmenter
and sample the LCA concepts at locations where the distri-
bution is less peaked, i.e. use LCA in places where one least
sure about a break. A second reasonable hybrid would be to



combine the content-based HMM segmenter used by Dragon
with a simple discourse-based HMM segmenter.

It may also be possible to leverage the strengths of the two ap-
proaches as follows. The LCA segmenter works in an unsu-
pervised manner but is somewhat slow. The HMM segmenter
is very fast, but requires training data. Over time, one could
use the LCA segmenter on a sample of the incoming data in
order to provide “up to the minute” training data for the faster
HMM segmenter in order to keep the distributions up to date
as the language use shifts over time.

2.4. CMU Approach

Motivation The original motivation for the CMU segmen-
tation research arose in the context of multimedia informa-
tion retrieval applications. In particular, both the News-on-
Demand and video library projects within Informedia Digital
Libraries project require segmentation of the video stream for
accurate and useful indexing, retrieval, browsing, and sum-
marization.

In order to find natural breaks in a video stream, it is impor-
tant to make use of the concurrent and often complementary
information in the text (closed captions or speech output), au-
dio, and image streams. The CMU approach was designed
around the idea that various “features” of these multiple me-
dia sources should be extracted and then combined into a
statistical model that appropriately weighs the evidence, and
then decides where to place segment boundaries. For multi-
media, the relevant features might include questions such as:
Does the phraseCOMING UP appear in the last utterance of
the decoded speech? Is there a sharp change in the video
stream in the last20 frames? Is there a “match” between the
current image and an image near the last segment boundary?
Are there blank video frames nearby? Is there a significant
change in the frequency profile of the audio stream in the next
utterance?

There are several key ingredients in this basic approach ap-
plied to the subproblem of text segmentation:

1. Content-based features derived from a pair of language
models that are used to help gauge “large scale” changes
of topic.

2. Lexical features that extract information about the local
linguistic and discourse structure of the context.

3. A new machine learning algorithm that incrementally
selects the best lexical features and combines them with
the information provided by the language models to
form a unified statistical model.

The use of language models, as described below, is geared
toward finding changes of topic—whether within or across
segment boundaries. This component is similar in spirit to

Dragon’s use of unigram language models trained on clus-
ters of segments, and the UMass local context analysis tech-
nique. The lexical features complement this information
by making more fine-grained judgments about those words
that correlate—both positively and negatively—with segment
boundaries. The feature selection algorithm automatically
“learns” how to segment by observing how segmentation
boundaries are placed in a sample of training text. This algo-
rithm incrementally constructs an increasingly detailed model
to estimate the probability that a segment boundary is placed
in a given context. Each of these ingredients is described in
more detail below.

Language Models. In the CMU approach the relative be-
havior of anadaptivelanguage model is compared to astatic
trigram language model in an on-line manner. The basic idea
is that the adaptive model generally gets better and better as
it sees more material that is relevant to the current “topic”
of a segment. However, when the topic changes, the perfor-
mance of the adaptive model degrades relative to the trigram
model since it is making its predictions based upon the con-
tent words of the previous topic. These language models are
essentially the same as those employed for the speech recog-
nition system used in CMU’s entry in the recent TREC eval-
uation for spoken document information retrieval.

Two static trigram models are used—one for the CNN ex-
periments and one for Reuters experiments. The CNN ex-
periments use a static trigram modelptri(w jw�2; w�1) with
a vocabulary of roughly 60,000 words that is trained on ap-
proximately150million words (four and a half years) of tran-
scripts of various news broadcasts, including CNN news, but
excluding those Journal Graphics transcriptions that overlap
with the time frame of the TDT Corpus. The Reuters exper-
iments use a trigram model that has a vocabulary of 20,000
words and is trained on approximately 38 million words of
Wall Street Journal data. Both models use the Katz backoff
scheme [9] for smoothing.

The method used to construct the adaptive model is to treat
the static trigram model as a default distribution, and then to
add certain features based on semantic word classes in or-
der to form a family of conditional exponential models. The
details of this model are described in [1]. Since the adap-
tive model should improve as it sees more material from
the current topic (or event), a segment boundary is likely
to exist when the adaptive model suddenly shows a dip in
performance—a lower assigned probability to the observed
words—compared to the short-range model. Conversely,
when the adaptive model is consistently assigning higher
probabilities to the observed words, a partition is less likely.

Lexical Features. The use of simple lexical features is in-
tended to capture words or phrases that are commonly used
to begin or end a segment in a particular domain, as well as to
extract simple linguistic and discourse clues that a boundary



is near.

As an example, in the domain of CNN broadcast news, a
story often will end with a reporter giving his or her name
and the location of the report:THIS IS WOLF BLITZER RE-
PORTING LIVE FROM THE WHITE HOUSE. In the domain
of Reuters newswire, on the other hand, which originates as
written communication, a story is often introduced by record-
ing the day on which the event occurred:A TEXAS AIR NA -
TIONAL GUARD FIGHTER JET CRASHED FRIDAY IN A RE-
MOTE AREA OF SOUTHWEST TEXAS.

The lexical features enable the presence or absence of partic-
ular words in the surrounding context to influence the statisti-
cal segmenter. Thus, the presence of the wordREPORTINGin
the broadcast news domain, or the presence of the wordFRI-
DAY in the newswire domain might indicate that a segment
boundary is nearby. The way in which the learning algorithm
actually chooses and uses these features is described briefly
in the next section.

Feature Induction The procedure for combining the evi-
dence in the language models and the lexical features is based
on a statistical framework calledfeature inductionfor random
fields and exponential models [2, 4]. The idea is to construct
a model which assigns to each position in the data stream
a probability that a boundary belongs at that position. This
probability distribution is incrementally constructed as a log-
linear model that weighs different “features” of the data. For
simplicity, it is assumed that the features are binary questions.

One way to cast the problem of determining segment bound-
aries in statistical terms is to construct a probability distri-
bution q(b j!), whereb 2 fYES; NOg is a random variable
describing the presence of a segment boundary in context
!. Consider distributions in thelinear exponential family
Q(f; q0) given by

Q(f; q0) =

�
q(b j!) =

1

Z�(!)
e��f(!) q0(b j!)

�

whereq0(b j!) is a prior ordefaultdistribution on the pres-
ence of a boundary, and� � f(!) is a linear combination of
binary featuresfi(!) 2 f0; 1g with real-valuedfeature pa-
rameters�i:

� � f(!) = �1f1(!) + �2f2(!) + � � ��nfn(!) :

The normalization constantsZ�(!) = 1+ e��f(!) insure that
this is indeed a family of conditional probability distributions.

The judgment of the merit of a modelq 2 Q(f; q0) relative to
a reference distributionp 62 Q(f; q0) during training is made
in terms of the Kullback-Leibler divergence

D(p k q) =
X
!2


p(!)
X

b2fYES;NOg

p(b j!) log
p(b j!)

q(b j!)
:

Thus, whenp is chosen to be the empirical distribution of a
sample of training eventsf(!; b)g, the maximum likelihood
criterion is used for model selection. The training algorithm
for choosing the parameters to minimize the divergence is the
Improved Iterative Scalingalgorithm presented in [4].

This explains how a model is chosen once the features
f1; : : : ; fn are known, but how are these features to be found?
One possibility is a greedy algorithm akin to growing a deci-
sion tree, although the models are closer to the form of cer-
tain neural networks. In brief, thegainof a candidate is esti-
mated as the improvement to the model that would result from
adding the feature and adjusting its weight to the best value.
After calculating the gain of each candidate feature, the one
with the largest gain is chosen to be added to the model, and
all of the model’s parameters are then adjusted using iterative
scaling. In this manner, an exponential model is incremen-
tally built up using the most informative features. See [4] for
details.

Results The exponential models derived using feature in-
duction give a probabilityp(b = YES j!) that a boundary
exists at a given position in the text. In order to actually seg-
ment text, this probability is computed in an “on-line” man-
ner, scanning the text sequentially. It is assumed that sentence
boundaries have been identified, and segment boundaries are
only placed between sentences. A segment boundary is hy-
pothesized if (1) the probabilityp(b = YES j!) exceeds a
pre-specified threshold�, and (2) a boundary has not been
previously placed in the immediately preceding� sentences.
The parameters� and� were chosen on a portion of heldout
training data to minimize the error probability, and were set
to� = 0:15 and� = 5 for CNN data, and� = 0:25 and� = 2

on newswire data.

As described in the TDT Evaluation Plan, the direct evalu-
ation for a hypothesized segmentationhyp with respect to
the reference segmentationref is computed as a probabil-
ity p(errorj ref ; hyp ; k). This is the probability that a ran-
domly chosen pair of words a distance ofk words apart is
inconsistently classified; that is, for one of the segmentations
the pair lies in the same segment, while for the other the pair
spans a segment boundary.

The CNN segmentation model was trained on approximately
one million words of broadcast news data not included in the
TDT Corpus, using the broadcast news language models de-
scribed above as the basis for language model features. A
total of 50 features were induced, and the model was trained
using the Improved Iterative Scaling algorithm. The selec-
tion of each feature from the pool of several hundred thou-
sand candidates takes on the order of 30 minutes, and then
training all of the weights takes roughly five minutes, on a
high-end workstation. No cross-validation was done to de-
termine the best stopping point, nor was the resulting model
smoothed in any way. One of the advantages of feature induc-



tion for exponential models, versus more standard machine
learning techniques such as decision trees, is that the proce-
dure is quite robust against over-fitting. When the resulting
50 feature model was then evaluated on the CNN portion of
the TDT Corpus, the error rate was 12.5%. The exact match
precision and recall were 72.2% and 72.3% respectively.

The segmentation model for the Reuters portion of the TDT
Corpus was built using a collection of approximately 250,000
words of AP newswire data, Wall Street Journal articles, and
Reuters headline news segments extracted from the Internet.
The language models used were trained on 38 million words
of Wall Street Journal data. Because of the lack of training
data from the Reuters domain, as well as the general absence
of strong cue phrases for story transitions in this written do-
main, it was expected that the resulting segmentation perfor-
mance would be inferior to that obtained for broadcast news,
and this was indeed what happened in the CMU results. A 50
feature model was induced on the training set, and when eval-
uated on the Reuters portion of the TDT Corpus, the resulting
error rate was 15.5%.

The Future The CMU segmentation research carried out
under the TDT project is clearly only a beginning, and there
are many directions in which this work can be extended, im-
proved, and made more practical. There is current work going
on at CMU to build on these results to develop segmentation
algorithms for multimedia data, making use of parallel text,
audio, and video streams.

The CMU approach has an economy of scale since the lan-
guage models that are used are identical to those that are used
for speech recognition systems constructed in the same do-
main. Improved language models for speech recognition can
be expected to yield improved performance for segmentation.
The exponential models resulting from feature induction are
very “concrete” in the sense that only a handful of specific
features are extracted, and the behavior of the resulting seg-
menter can be well understood—there are specific “explana-
tions” of the decisions that it makes. Moreover, since the
model directly assigns a probability distribution to bound-
aries, a confidence in the decisions is easy to assign.

The challenge of future work is to preserve these strengths
while integrating the complementary strengths of the Dragon
and UMass approaches.

2.5. Discussion

One of the remarkable outcomes of the TDT study on seg-
mentation is the diversity of ideas and techniques that have
been brought to bear on this problem. Broadly speaking,
these ideas and techniques fall into two classes: those that
focus on storycontentand those that focus on story struc-
ture ordiscourse. In the details, however, there is very little
similarity between approaches. Dragon’s content-based sys-

TWA
TDT CNN Reuters cc rec

Dragon 12.9 16.8 12.3 25.5 33.6
UMass 17.6 — — — —
CMU — 12.5 15.5 — —

Table 1: Segmentation error rates (percentages).

tem models stories as instances of topics described by sim-
ple unigram statistics; UMass, in one approach, treats stories
as collections of similar queries to an information retrieval
system, and in another approach, as a set of words bounded
by marker words and phrases; and CMU’s system exploits
both content and discourse features simultaneously, training
an exponential model to combine information from a trig-
ger/trigram language model with features that are associated
with story boundaries.

This variety of approaches bodes well for the future of work
on segmentation. It not only means that improvements on the
current task are likely to be realized by combining some of
these different ideas, but also that a variety of different tasks
can be addressed by selecting the approach with the appro-
priate strengths. For example, on the CNN task, for which
a large amount of well-matched training data was available,
CMU’s feature-learning mechanism proved to be very effec-
tive; on the Reuters task, for which well-matched training ma-
terial was not available, Dragon’s content-based system was
more robust (see Table 1).

The indirect evaluation of segmentation (described in Sec-
tion ) shows that carefully transcribed broadcast data can
probably be segmented well enough with the current meth-
ods that subsequent processing (tracking, at least) will not
suffer much. It remains to be seen if the same can be said
of not-so-carefully transcribed data, such as that produced by
closed-captioning or recognition. The one small test that has
been done using the TWA Corpus indicates that this may be a
hard problem. On the other hand, in TDT segmentation of the
broadcast stream is not an end in itself, but an enabling tech-
nology for subsequent tracking and detection processes, and
it may prove to be the case that methods of the type developed
here will be adequate to support these technologies.

3. New Event Detection

Eventdetectionis the problem of identifying stories in sev-
eral continuous news streams that pertain to new or previ-
ously unidentified events. In other words, detection is an un-
supervised learning task (without labeled training examples).
Detection may consist of discovering previously unidenti-
fied events in an accumulated collection (“retrospective de-
tection”), or flagging the onset of new events from live news



feeds or incoming intelligence reports in an on-line fashion
(“on-line detection”). Both forms of detection by design lack
advance knowledge of the new events, but do have access to
(unlabeled) historical data as a contrast set.

In the TDT study, the input toretrospective detectionis the
entire corpus. The required output by a detection system is
a partition of the corpus, consisting of story clusters which
divide the corpus into event-specific groups according to the
system’s judgment. (CMU’s and UMass’s methods exhibit
considerably better performance when they are allowed to
place stories within multiple event groups.)

The input toon-line detectionis the stream of TDT stories
in chronological order, simulating real-time incoming news
events. The output of on-line detection is a YES/NO deci-
sion per story made at the time when the story arrives, in-
dicating whether this story is the first reference to a newly
reported event. A confidence score per decision is also re-
quired. These scores are used later to investigate potential
trade-offs between different types of errors(misses and false
alarms) by applying different thresholds on these scores and
thus shifting the decision boundary.

How to use the above information to detect unknown events
presents new research challenges. There are multiple ways to
approach the problem.

� The CMU approach to retrospective event detection is to
cluster stories in a bottom-up fashion based on their lexi-
cal similarity and proximity in time. The CMU approach
to on-line detection combines lexical similarity (or dis-
tance) with a declining influence look-back window of
k days when judging the current story, and determine
NEW or OLD based on how distant of the current story
from the closest story in thek days window.

� The UMass approach to on-line detection is similar to
the extent that it uses a variant of single-link clustering
and builds up (clusters) groups of related stories to rep-
resent events. New stories are compared to the groups
of older stories. The matching threshold is adjusted over
time in recognition that an event is less likely to be re-
ported as time passes. UMass’ retrospective detection
method focuses on rapid changes by monitoring sudden
changes in term distribution over time.

� The Dragon approach is also based on observations over
term frequencies, but using adaptive language models
from speech recognition. When prediction accuracy of
the adapted language models drops relative to the back-
ground model(s), a novel event is hypothesized.

3.1. Detection evaluation

The detection task used the entire TDT study corpus as in-
put. However, detection performance was evaluated only on

those stories which discuss only one of the 25 target events
and which are flagged as such with a YES flag for that story.
There are 1131 such stories.6

Retrospective Event Detection System output for the ret-
rospective event detection task is the clustering information
necessary to associate each of the stories with a cluster. (Each
story is constrained to appear in only one cluster.) This in-
formation is recorded in a file, one record per story, with
records separated by newline characters and with fields in a
record separated by white space. Each record has five fields in
the following format: “Cluster Nt Story Decision
Score ”, where:

� Clusteris an index number in the rangef1, 2, . . .gwhich
indicates the cluster (event) affiliation of the story.

� Nt is the number of stories used to train the system to the
event. (Since this is a detection task,Nt = 0, but it is
kept in the output to maintain format uniformity across
different tasks.)

� Story is the TDT corpus index number in the rangef1,
2, . . . 15863g which indicates the story being processed.

� Decisionis either YES or NO, where YES indicates that
the system believes that the story being processed dis-
cusses the cluster event, and NO indicates not. (Again,
Decision should always be YES since the story is a
member of its cluster, but it is retained in the output for-
mat so as to maintain format uniformity across different
tasks.)

� Scoreis a real number which indicates how confident
the system is that the story being processed discusses
the cluster event. More positive values indicate greater
confidence.

The performance of retrospective detection is evaluated by
measuring how well the stories belonging to each of the target
events match the stories belonging to the corresponding clus-
ter. This presents a problem, because it is not known which
of the clusters corresponds to a particular target event. Thus it
is necessary to associate each target event with (exactly) one
cluster to determine this correspondence. This was accom-
plished by associating each target event with the cluster that
best matches it. The degree of match between an event and
a cluster is defined to be the number of stories that belong to
both the event and the cluster.

Note that retrospective detection uses the entire TDT corpus
of 15,863 stories, but is evaluated only on the manually la-
beled stories of 25 events (containing about 7% of the total
stories).

6There are a total of 1382 non-NO event flags and 1372 flagged stories.
(10 stories were flagged by two events.) However, 240 of these stories were
flagged as BRIEF, and one was flagged as YES by two events.



On-line New Event Detection The on-line new event detec-
tion task is to output a new event flag each time a story dis-
cusses a new event. Since evaluation is performed only over
the set of target events, the small number (25) of type I trials
presents a problem for estimating performance. This problem
is addressed by artificially changing the corpus so as to mul-
tiply the number of type I trials byNskip (with Nskip = 10).
This is done in the following way:

� The corpus is processed once after deleting all stories
with BRIEF event tags.

� The corpus is processed a second time after further delet-
ing the first story which discusses each of the target
events.

� The corpus is processedNskip�1more times, each time
further deleting the subsequent first (next) story which
discusses each of the target events, until the firstNskip

stories discussing each of the target events have been
skipped.

System output for the on-line detection task will be a dec-
laration for each story processed. This output is to indicate
whether or not the story discusses a new event. This infor-
mation was recorded in a file in ASCII format, one record
per story, with records separated by newline characters and
with fields in a record separated by white space. Each record
has six fields in the following format: “Event Nt Story
Decision Score jskip”, where:

� Eventis an event index number. (Since there is no event
affiliation for the on-line detection task, Event is set to
zero, but it is retained in the output format so as to main-
tain format uniformity across different tasks.)

� Nt is the number of stories used to train the system to
the event. (Since this is a detection task,Nt is identi-
cally zero, but it is retained in the output format so as to
maintain format uniformity across different tasks.)

� Story is the TDT corpus index number in the rangef1,
2, . . . 15863g which indicates the story being processed.

� Decisionis either YES or NO, where YES indicates that
the system believes that this story is the first to discuss
the event which the story discusses, and NO indicates
not.

� Scoreis a real number which indicates how confident
the system is that the story being processed is the first to
discuss the event. More positive values indicate greater
confidence.

� jskip is the number of initial stories that have been
skipped for each of the target events, in the rangef0,
1, . . .Nskip g.

Evaluation measures Given a story and a particular event
in consideration, the output of a detection system is a
YES/NO decision with a confidence score. The performance
average over a set of test stories is used to evaluate the de-
tection system. Five evaluation measures are reported in this
study: miss rate, false alarm rate, recall, precision, and theF1
measure. The miss and false alarm rates were the “official”
measures of the pilot study.

The F1 measure[14] was used as a way of balancing re-
call and precision, in a way that each of them is given
equal weight. A more general form of theF-measureis

F�(r; p) =
(�2+1)pr
�2p+r

where� is the parameter allowing dif-
ferential weighting ofp andr. The F-measure is commonly
used as an optimization criterion in binary decision making,
when recall and precision are considered as the primary per-
formance measures.

In addition to optimizing binary decisions, another objective
of the TDT study is the ability to achieve a tradeoff between
different types of performance scores at any level desired. A
Decision Error Trade-off (DET) curve between misses and
false alarms is used for this part of the evaluation.

3.2. The CMU Approach

Given the lack of knowledge about events, event detection
is essentially a discovery problem—i.e.,mining the datafor
new patterns, in a new paradigm ofquery-freeretrieval. CMU
takes an approach based on group average agglomerative text
clustering, aiming the discovery of natural patterns of news
stories over concepts (lexicon terms) and time. This ap-
proach creates a hierarchical tree of clusters, with the top lay-
ers representing a rough division into general topics, and the
lower ones a finer division into narrower topics and events.
CMU also investigated an incremental average-link cluster-
ing method that produces a single level partition of the TDT
corpus.

Incremental clustering For story and cluster representa-
tion, CMU uses the conventional vector space model.[13]
A story is presented as a vector whose dimensions are the
stemmed unique terms in the corpus, and whose elements
are the term weights in the story. By “terms” we mean
words or phrases in general. A cluster is represented using
a prototype vector(or the centroid) which is the normalized
sum of the story vectors in the cluster. For term weighting
in a story vector, CMU tested several typical term weight-
ing schemes which combine the within-story term frequency
(TF) and the Inverse Document Frequency (IDF) in different
ways. As implementation, CMU uses the mechanisms pro-
vided in SMART, a benchmarking retrieval system developed
by the Salton group at Cornell [13]. The term preprocess-
ing includes removal of stop words, stemming, and then term
weighting. The “ltc” option (in the SMART notation) yielded
in the best clustering results in the experiments, where the



weight of termt in storyd is defined to be:

w(t; d) = (1 + log2 TF(t;d))� IDFt=k~dk:

The denominatork~dk is the 2-norm of vector~d, i.e., the
square root of the squared sum of all the elements in that vec-
tor. The similarity of two stories is defined as the cosine value
of the corresponding story vectors. Similarly, the similarity of
two clusters is defined as the cosine value of the correspond-
ing prototype vectors.

Having stories and clusters represented in vectors, the incre-
mental clustering is straightforward. For each consecutive
story, compute the cosine similarity of this story and each
cluster centroid in the accumulated set. If the similarity score
between this story and the closest cluster is above a threshold
(pre-selected), then add this story to the cluster as a member,
and update the prototype vector correspondingly. Otherwise,
add this story as a new cluster in the set. Repeat the above
until the corpus is done.

This algorithm results in a flat partition of the TDT corpus.
The number of clusters in the partition depends on the clus-
tering threshold in Step 3. When setting the threshold to a
value of 0.23, we obtained a partition of 5,907 clusters which
yielded the optimal result evaluated using the 25 events la-
beled by humans (see Section ).

Group-average based clustering The core part of CMU’s
method is an agglomerative algorithm namedGroup Average
Clustering[8, 6] which maximizes the average pairwise simi-
larity between stories in each cluster. This algorithm uses the
same vector representation for documents and clusters and
produces a binary tree of story clusters in a bottom-up fash-
ion: the leaf nodes tree are single-story clusters; a middle-
level node is the centroid of the two most proximate lower-
level clusters; and the root node of the tree (if the algorithm
is allowed to reach this point) is the universal cluster which
contains all sub-clusters will all the stories. The GAC al-
gorithm has a quadratic complexity in both time and space,
although envisioned improvements based on [15] and other
work at CMU should yield sub-quadratic space complexity,
without increasing time complexity. In order to reduce the ef-
fective complexity and to exploit natural temporal groupings
of events in news-streams CMU used the following modified
form of GAC clustering:

1. Sort the TDT stories in chronological order, and use this
as the initial partition of the corpus where each cluster
starts with a single story.

2. Divide the partition (a cluster series) into non-
overlapping and consecutive buckets whose size is fixed
in terms of the number of clusters they contain.

3. Apply GAC to each bucket, i.e., combine lower-level
clusters into higher-level ones in a bottom-up fashion

until the bucket size (number of clusters in it) is reduced
by a factor of�.

4. Remove the bucket boundaries (assemble all the GAC
clusters) while reserving the time order of the clusters.
Use the resulting cluster series as the updated partition
of the corpus.

5. Repeat Step 2-4, until a pre-determined number of clus-
ters is achieved in the final partition.

6. Periodically (say, once per 3 iterations in Step 2-4) flat-
ten each cluster, and apply GAC internally to each flat-
tened cluster for re-clustering. This is CMU’s augmenta-
tion to Cutting and Pedersen’s algorithm. It enables sto-
ries belonging to the same event, but initially assigned to
different buckets, to be re-assigned to a common cluster.

On-line Detection Algorithm CMU’s on-line detection is
implemented as below:

1. The algorithm starts with an empty set (“PAST”) of clus-
ters, with the pre-determined values for the following
parameters:

� the detection thresholdwhich is the minimum
score for the system to say that the current story
belongs to a new event;

� the combining thresholdwhich is the minimum
similarity score for adding a story as a new mem-
ber of an existing cluster;

� the window sizewhich is the maximum number of
clusters in PAST, or the aging limit (in terms of
days) of a cluster to be a member in PAST.

2. Read the next story as “the current”. Compute the simi-
larity of this story and all the clusters in PAST.

� If the largest similarity value is above thedetection
threshold, then announce “YES” as the detection
of a new event; otherwise, announce “NO”.

� If the largest similarity value is above thecluster-
ing threshold, then add the current story to the clos-
est cluster, and update the prototype vector of the
cluster correspondingly; otherwise, add the current
story an a new cluster in PAST, and remove the old-
est cluster from PAST if it exceeded the window
size.

3. Repeat the above step until the end of the input series.

This algorithm is similar to the incremental clustering algo-
rithm used for retrospective detection (Section ), except for
two modifications:



� The PAST reference is restricted to a time window of
fixed number of stories or days which are closest to the
current story, instead of referring an infinite past.

� A detection threshold, independent from the cluster
combining threshold, is used to differentiate NEW from
OLD.

3.3. The UMass Approach

Retrospective Detection UMass used two different ap-
proaches to retrospective event detection:

In the first approach, the TDT collection was examined and
all words and noun phrases that occur very often in the col-
lection that donot also occur often in a separate training col-
lection were identified as potential triggers for clusters. Each
of those terms was then examined to see if its occurrence in
documents was heavily concentrated in some small range of
time. If not, the term did not trigger an event.

For a term that did trigger an event, all documents containing
the term within a time range (determined by the standard de-
viation of daily occurrence) were handed to a relevance feed-
back algorithm and a query representing event was created.
UMass applied that query to the collection as a whole to find
documents that matched the event. A final trimming step re-
moved outlier stories by considering the concentration of sto-
ries over a range of days.

The second approach was a bottom-up agglomerative clus-
tering of the documents similar to CMU’s. Document sim-
ilarity was accomplished using the same queries created by
on-line detection (described below). Documenti andj are
compared by running queryi against documentj, then query
j against documenti, and averaging the resulting two belief
scores. Only document pairs that are more than two standard
deviations away from the mean comparison score are eligible
to invoke clustering. This provides a stopping criterion for
the clustering.

On-Line Detection The UMass algorithm for on-line event
detection follows these steps:

1. For each document, extract then most important fea-
tures needed to build a query representation of this doc-
ument.

2. Calculate a belief threshold for this document’s corre-
sponding query by running the query against its source
document. That belief value is an upper bound on the
threshold; it is adjusted downward as described below.

3. Compare the new document against all previous queries.
If the document does not exceed the the threshold of an
existing query flag the document as containing a new
event.

4. If the document exceeds the the threshold of any existing
query flag the document as not containing a new event.

5. Save the document’s query (and threshold) in the query
set.

For the type of query used in this system, InQuery’s belief
values can range from 0.40 to 1.00. UMass used a threshold
above in step 2 that is somewhere between 0.40 and the belief
of the document against its own query. We tried various val-
ues, but found that values from 20-30% of the way between
the two worked well in general, with a lower threshold was
more useful with a larger set ofn features.

UMass also applied an aging factor to the thresholds: over
time, the threshold for matching grew higher and higher. This
was meant to model the idea that an event is less and less
likely to be reported as time passes—i.e., it slowly becomes
news that is no longer worth reporting. UMass found that
the aging factor was an important factor in achieving good
results.

3.4. Dragon Approach

Dragon’s online and retrospective detection systems are ap-
plications of the clustering technology used to train back-
ground models for the segmenter. As described in the seg-
mentation report, this technology is an implementation of a
k-means clustering algorithm.

Online Detection Dragon followed CMU’s lead and ap-
proached the online detection task as a clustering problem
in which the stories being clustered could be examined only
once. With this interpretation, online detection is a natural ap-
plication ofk-means clustering, in which one executes only
the first pass of the algorithm. Following this procedure, the
first story in the corpus defines an initial cluster. The remain-
ing stories in the corpus are processed sequentially; for each
one the “distance” to each of the existing clusters is com-
puted. A story is inserted into the closest cluster unless this
distance is greater than a threshold, in which case a new clus-
ter is created. The decision to create a new cluster is equiva-
lent to declaring the appearance of a new event.

The old distance measure Given that several iterations of
Dragon’s implementation of thek-means algorithm produces
good clusters for the segmenter, one would expect that the
first pass alone would provide a credible basis for an online
detection system. This turns out not to be the case. In fact,
the performance of Dragon’s clustering algorithm in its first
iteration turns out to be horrible, essentially dividing the cor-
pus into chunks of about 50 consecutive stories and declaring
these to be clusters.

The problem in the first pass arises due to a subtle property of



the distance measure,

d =
X
n

(sn=S) log
sn=S

(cn + sn)=(C + S)

+
X
n

(cn=C) log
cn=C

(cn + sn)=(C + S)
;

wheresn and cn are the story and cluster counts for word
wn, with S =

P
sn andC =

P
cn. The two terms have the

following interpretation: the first is the distance between the
story and the cluster after the story has been inserted into it,
and the second is the distance that the cluster itself moves as
a result of incorporating the story.

A problem arises for very small clusters: because of the merg-
ing of the story and cluster distributions in the denominator
of the log, a story can actually “drag” a small cluster close
enough that the distance to it is small, and therefore below
threshold. Thus whenever a new cluster is created by the clus-
tering algorithm, all subsequent stories are found to be close
in distance until the cluster gets big enough (about 50 stories,
given our threshold settings), at which point a new cluster is
created and the cycle begins again.

The new measure Dragon fixed the measure for the online
task by smoothing the cluster distribution used in the dis-
tance computation with a background distribution, and then
preventing the cluster from being “dragged” by the story
distribution. Two improvements were also made: a story-
background distance was subtracted from the story-cluster
distance (to compensate for the fact that small clusters tend
to look a lot like background after smoothing), and a decay
term was introduced to cause clusters to have a limited du-
ration in time. This term is just a decay parameter times the
difference between the number of the story represented by the
distributionsn and the number midway between the first and
last stories in the cluster.

The new measure has the form

d =
X
n

(sn=S) log
un=U

c0n=C
+ decay term;

wherec0n is the smoothed cluster count for wordwn, andun
is the background unigram count withU =

P
un.

Tuning the online detection system means adjusting the decay
parameter and the overall threshold. Currently these can only
be tuned on the test corpus.

3.5. Results, Analysis, and Future Work

The three sites have obtained results for retrospective and on-
line detection, evaluated using the various metrics discussed,
including F1 and DET curves. Tables 2, 3 and 4 list the re-
ported results for several of the runs from the various sites.
Figure 1 shows the DET curves of the best online runs, one

for each site. Figures 3, 2 and 4 are the DET plots of retro-
spective detection systems.

CMU optimization efforts In order to optimize results,
CMU is investigating the following: dealing with out-of-
vocabulary (OOV) terms; incremental updating of IDF; using
time windows and declining weighting factors; dynamically
setting Clustering thresholds; and, unsupervised incremental
learning.

The incremental updating of Inverted Document Frequency
(IDF) is defined to be:

IDF(x;t) = log2(N(x)=n(x;t))

wheret is a term,x is the current story,N(x) is the number
of stories in the sequence from the first story in the corpus
(TDT or JGI+TDT) to the current pointx, andn(x;t) is the
number of stories which constrain termt in the sequence to
the current pointx.

In terms of using time constraints in on-line detection, CMU
tried two methods. The first method was to use a time window
of k stories, denoted asWk , which is prior to the current story.
The detection decision on the correct story,x, is based on the
comparison of this story with each story in the window:

score(x) = 1� max
di2Wk

fcos(~x; ~di)g

Another method was to use a decaying weighting function to
adjust the influence of stories in the window. Thescore(x)
in this method is modified as

score(x) = 1� max
di2Wk

f
i

k
cos(~x; ~di)g:

This modification makes the decision rely more on the stories
which are closer to the current time, than the stories far in the
past. In other words, it is a smoother way to use a time win-
dow than a uniformly weighted window. CMU found that a
window size of 700 is about optimal when not using the de-
caying weighting function, and a size of 2500 optimal when
using the decay weighting. The relative improvement from
using decaying weights is about 2% in theF1 measure over a
fixed window.

UMass optimization efforts The word-trigger approach
provided reasonably high-precision clusters, but realized bad
recall: the cluster sizes were too small. UMass believes that
the recall can be improved by relaxing some constraints.

For the bottom-up agglomerative approach, UMass found the
unsurprising result that higher-dimensionality query repre-
sentations were more effective. 100- and 50-term queries
were noticeably more effective than 10-term queries, in the
same way that they were for on-line detection. However,
in this case the 50-term queries outperformed the 100-term
queries.
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Figure 1: TDT On-line Detection Runs
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Figure 2: TDT Retrospective Detection Runs, Averaged Over Events
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Figure 3: TDT Retrospective Detection Runs, By Event
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Run %Miss %f/a %Recall %Prec micro-avg F1 macro-avg F1
CMU incremental 38 0.09 62 67 0.64 .77
CMU gac top-level 17 0.32 83 43 0.56 .63
Dragon 39 0.08 61 69 0.65 .75
UMass 100T 66 0.09 34 53 0.42 .60
UMass 10T 67 0.50 33 16 0.21 .53

Table 2: Retrospective Detection Results: Partition Required. (Official evaluation)

For retrospective detection, UMass did only a small amount
of work with alternate types of features (e.g., phrases) for
these experiments; preliminary results suggest that multi-
word features are helpful.

Similar to CMU’s time-windows UMass found that the time
sensitive nature of event reporting can be captured by aging
the belief thresholds. For a given documents’ query, UMass
raised the threshold incrementally as each subsequent story
was processed, making it more and more difficult for later
stories to pass the threshold. This aging of the thresholds
provided substantial improvements in precision without im-
pacting recall noticeably. Note, however, that the aging helps
performance of unexpected events (e.g., disasters) but hurts
performance of long-running events such as the O.J. Simpson
trial.

Dragon’s Optimization Directions Dragon believes that
further careful research on the clustering measure can pro-
duce performance gains in its system. The fact that the ret-
rospective evaluation indicates that the new distance measure
does better than the old one suggests that the clustering of the
background topics used by the segmenter should be revisited,
and the segmentation experiments rerun with topics based on
the new measure. This is an area for future work.

3.6. Open Issues

Some related issues pertaining to event detection have not
been addressed in the pilot TDT study, but evolve naturally
therefrom, including:

� How to provide a global view of the information space
to users and navigation tools for effective and efficient
search?

� Some approaches generate a cluster hierarchy automati-
cally. How to choose the right level of clusters for user’s
attention that best fits the information need of the user?

� How to summarize the information at different degrees
of granularity, i.e., at a corpus level, a cluster level, a
story level, and a sub-story level? How to provide user-
specific or query-specific summaries? How to remove

redundant parts and maximize the information in a sum-
mary?

� How to make a better use of temporal information in
event detection and tracking than we have done? In
the case of on-line detection, for example, we have only
taken the simplest approach of imposing a time window
to the data stream.

� How to improve the accuracy of on-line detection by in-
troducing limited look-ahead? For instance, noting that
two or three stories arriving very close in time are highly
related to each other but different than anything in a pre-
vious time interval would be a very good indicator of a
new breaking event.

4. Event Tracking
The TDT event tracking task is fundamentally similar to the
standard routing and filtering tasks of Information Retrieval
(IR). Given a few sample instances of stories describing an
event (i.e., stories that provide a description of the event), the
task is to identify any and all subsequent stories describing
the same event. Event tracking is different from those IR
tasks in that events rather than queries are tracked, and in that
events have a temporal locality that more general queries lack.
These differences shift the nature of the problem slightly but
at the same time shift the possible solutions significantly. The
narrowing of the scope of information filtering encourages
modifications to existing approaches and invites entirely new
approaches that were not feasible in a more general query-
centric setting.

This report discusses approaches to Event Tracking by re-
search teams from CMU, the University of Massachusetts,
and Dragon Systems.

4.1. Tracking evaluation

Each event is to be treated separately and independently. In
training the system for any particular target event, allowable
information includes the training set, the test set, and event
flags for that target event only. (No information is given on
any other target event).

Evaluation will be conducted for five values ofNt , namely



Run %Miss %f/a %Recall %Prec micro-avg F1 macro-avg F1
CMU gac hierarchy 25 0.02 75 90 0.82 .84
UMass 100T-dups 27 0.06 73 78 0.75 .81
UMass 10T-dups 31 0.05 69 80 0.74 .81

Table 3: Retrospective Detection Results: Duplicates Allowed.

f1, 2, 4, 8, 16g. In training,Nt will count just the number of
YES tags for the target event and will exclude the BRIEF tags.
However, the full classification of each story in the training
set (i.e., YES, BRIEF, and NO) may be used in training.

All of the stories in the test set must be processed, but there
will be two evaluations – one over all of the test data (for each
value ofNt), and one over a fixed set of test data, namely
the test set corresponding to(Nt)Max = 16. (Tabulating
performance for a fixed test set asNt varies will allow a more
stable comparison of performance across the various values
of Nt , because the test set will be the same for all values of
Nt .)

The test stories are to be processed in chronological order,
and decisions must be made “on line”. That is, the detection
decision for each test story must be output before processing
any subsequent stories. Decisions may not be deferred.

The event tracking system may adapt to the test data as it
is processed, but only in an unsupervised mode. Supervised
feedback is not allowed. (Evaluating over a set ofNt’s pro-
vides essentially equivalent information.)

In calculating performance, those stories tagged as BRIEF for
the target event will not be included in the error tally.

There will be a TDT tracking trial for each story, and for each
event, and for each value ofNt . This will make a total of
about 1,000,000 trials. This number is derived by multiplying
the number of target events (25) by the average number of
test stories (assumed to number about 8,000) by the number
of values ofNt (5). Of these trials, less than one percent will
be type I (true) trials.

For each trial, there will be two outputs - first, a logical de-
tection indication, YES or NO, indicating whether the system
believes that the story discusses the target event; and second,
a score indicating how confident the system is in this decision.
This confidence indicator will be used to compute a detection
error trade-off (DET) between misses and false alarms.

The trials for the tracking task will be recorded in a file in
ASCII format, one record per trial, with trials separated by
newline characters and with fields in a record separated by
white space. Each record will have 5 fields in the format,
“Event Nt Story Decision Score ”, where:

� Event is an index number in the rangef1, 2, . . . , 25g
which indicates the target event being detected.

� Nt is the number of stories used to train the system to
the target event.

� Story is the TDT corpus index number in the rangef1,
2, . . . 15863g which indicates the story being processed.

� Decisionis either YES or NO, where YES indicates that
the system believes that the story being processed dis-
cusses the target event, and NO indicates not.

� Scoreis a real number which indicates how confident
the system is that the story being processed discusses the
target event. More positive values indicate greater con-
fidence. (Large negative numbers indicate lack of confi-
dence, while large positive number indicate high confi-
dence.)

Indirect Evaluation of Segmentation Segmentation (see
Section ) will be evaluated indirectly by measuring event
tracking performance on stories as they are defined by auto-
matic segmentation means. A straightforward three-step pro-
cedure will be used:

1. Segment the whole corpus using the segmentation sys-
tem under test.

2. Using an event tracker that has been evaluated on the
TDT corpus previously, run this system on the auto-
segmented corpus. Follow the standard event tracking
rules, with the following exceptions:

� Train the event tracking system on the original cor-
rectly segmented stories.

� Begin evaluation on the first auto-segmented story
which follows the last training story and which is
disjoint from it.

3. Evaluate the event tracker results and compare these re-
sults with results on the original correctly segmented
stories.

The evaluation is complicated by the fact that there are no
event flags for the auto-segmented stories. This problem will
be solved by creating scores for the original stories from those



Run %Miss %f/a %Recall %Prec micro-avg F1 macro-avg F1
CMU decay-win2500 59 1.43 41 38 .40 .39
CMU fixed-win700 55 1.80 45 35 .39 .39
Dragon 58 3.47 42 21 0.28 .28
UMass 100T 50 1.34 50 45 0.48 .45
UMass 50T 51 1.31 49 45 0.47 .47
UMass 10T 59 1.19 41 43 0.42 .42
UMass 10T notime 73 1.53 27 28 0.28 .27

Table 4: On-line Detection Results: Average Over 11 Runs.

computed for the auto-segmented stories.7 The evaluation
will then be performed on the original stories using these
synthetic scores. The synthetic score for each original story
will be a weighted sum of the scores for all overlapping auto-
segmented stories, where the weight prorates each score ac-
cording to how many words the overlapping story contributes:

Scoreorig(i) =

P
j2overlap(i) wij � Scoreautoseg(j)P

j2overlap(i) wij

wherewij is the number of words in thejth auto-segmented
story that overlap with theith original story.

The output record format will be the same as for the conven-
tional event tracking task. The decision will be computed in
the standard way and will be based on the synthetic score.

Speech Tracking – the TWA 800 crash event In addition
to the TDT study corpus, an additional corpus will be pro-
cessed to explore the tracking task for different representa-
tions of speech, including machine recognition of speech.
The corpus consists of CNN recordings and spans the period
during 1996 when the TWA 800 crash occurred. This corpus
contains a total of 1029 stories, of which 35 discuss the TWA
crash. Two different representations of the speech will be pro-
cessed: (1) Closed captioning taken from the CNN broadcast;
and, (2) Speech recognition output provided by CMU. There
were no JGI transcripts for the TWA corpus, so there is no
“accurate” representation of the speech.

4.2. UMass approach

All efforts by UMass to attack this problem have focused on
its similarity to information filtering. For that reason, UMass
used the training data (positive and negative) to create a short
query intended to represent the event being tracked. The

7There are two possible ways of solving this problem - either by mapping
the event flags for the original stories onto the auto-segmented stories, or
by mapping the decisions on the auto-segmented stories onto the original
stories. Mapping event flags onto the auto-segmented stories might seem to
represent the actual application scenario more accurately. Mapping scores
was chosen, however, to facilitate a clearer comparison with results on the
original stories and to avoid conceptual and mechanical difficulties involved
in mapping the event flags.

training data were also used to derive a threshold for compar-
ison with that query. That query was applied to all subsequent
stories—if they matched the query, they were “tracked.”

UMass tried two approaches. The first was based on simple
“relevance feedback” methods of IR. TheNt positive training
examples and up to100Nt negative training examples were
handed to a relevance feedback routine that built queries of 10
to 100 words that were intended to represent the event. The
query was run against the training set to select a threshold.

A second approach used a shallow parser to extract nouns and
noun phrases (rather than all single terms), weighted features
in two different ways—one that gave features a higher weight
if they occurred frequently within at least one training story,
and the other that weighted features based upon the number
of training stories it occurred in.

4.3. CMU approach

CMU developed two methods for tracking events: ak-Nearest
Neighbor (kNN) classifier and aDecision-Tree Induction
(dtree) classifier.

kNN is an instance-based classification method. All training
instances (positive and negative) of each event being tracked
are stored and efficiently indexed. The approach proceeds by
converting each story into a vector as it arrives and comparing
it to all past stories. Thek nearest training vectors (measured
by cosine similarity) to the incoming story each “vote” for
or against the new story, based on whether or not they are
themselves members of the event. For a binary decision, we
set a threshold on the scores to vote YES or NO fordi being
an instance of the tracked event. For instance, vote YES iff
score> 0.

CMU ran some variation on kNN in an effort to find ap-
proaches that yielded high-quality results across the entire
miss vs false-alarm tradeoff spectrum, as exhibited in the
DET curves in the evaluation section. The alternate ap-
proaches were based upon usingtwo nearest-neighborhoods
(not necessarily of the same size), one for positive instances
of the event and one for negative, computing scoresS+ and



S� respectively, using the same similarity-weighted voting as
before. The overall score was a linear combination or a ratio
of the two neighborhoods’ scores.

Decision Trees Decision trees (dtrees) are classifiers built
based on the principle of a sequential greedy algorithm which
at each step strives to maximally reduce system entropy. De-
cision trees select the feature with maximal information gain
(IG) as the root node, dividing the training data according to
the values of this feature, and then for each branch finding
the next featurefk such thatIG(S(fj); fkjfj) is maximized,
and so on recursively. Decision trees are typically good when
there are sufficient training instances belonging to each class.
One disadvantage of dtrees is that they cannot output contin-
uously varying tradeoff scores and thus are unable to generate
meaningful DET curves (some efforts were made to produce
DET curves from the dtrees, but they were not highly suc-
cessful).

4.4. Dragon approach

Dragon’s event tracker is an adaptation of its segmenter,
which is described in more detail in the segmentation report.
As discussed there, the segmentation algorithm does segmen-
tation and topic assignment simultaneously. In general, the
topic labels assigned by the segmenter (which are drawn from
the set of automatically derived background topics) are not
useful for classification, as they are few in number and do not
necessarily correspond to categories a person would find in-
teresting. However, by supplementing the background topic
models with a language model for a specific event of inter-
est, and allowing the segmenter to score segments against this
model, it becomes possible for the the segmenter to output a
notification of an occurrence of that event in the news stream
whenever it assigns that event model’s label to a story. In this
implementation, the topic models have the role of determin-
ing the background against which the event model must score
sufficiently well to be identified.

In this incarnation, the segmenter is not asked to identify story
boundaries. Its job is merely to score each story against its
set of background models, as well as against the event model,
and report the score difference between the best background
model and the event model. A threshold is applied to this
difference to determine whether a story is about the event or
not, and this threshold can be adjusted to tune the tracker’s
output characteristics. For example, a low threshold means
that a story does not have to score much better in the event
model than it does in the best background model (or, perhaps,
may even fail to score as well by a specified amount) for it
to be declared an instance of the event. This tuning tends to
result in missing very few stories on the event, but probably
will generate a high number of false alarms.

Event models were built from the words in theNt training
stories, after stopwords were removed with some appropriate

Run %Miss %F/A F1 % Prec
CMU kNN 29 0.40 0.66 61

Dragon 71 0.12 0.39 60

UMass nonRF-comb 55 0.10 0.60 88
UMass nonRF-20T 13 2.35 0.41 27
UMass RF100 39 0.27 0.62 62

Table 5: Tracking results forNt = 4, pooled average across
all 15 events evaluated (evaluation atNt = 16). (Note that
recall is 1 minus the miss rate.)

smoothing. In this case, in order to provide a more accurate
smoothing for the event model, we take as the backoff distri-
bution the mixture of the background topic models that best
approximates the unsmoothed event model. There is there-
fore a different backoff model for every event and every value
of Nt.

4.5. Evaluation methodology

The first 16 stories on each event8 are set aside for training
purposes. A system’s ability to track events is tested on all
stories from the one immediately following the16th training
story through the end of the TDT corpus. Note that this means
that the test sets for each event are different.

A system is evaluated based on varying amounts of training
data. Each system is allowedNt positive training examples,
whereNt takes on values 1, 2, 4, 8, and 16. The system is
permitted to train on allNt positive stories as well as all sto-
ries that occur in the corpusprior to theN th

t story. Note that
the training subset may include some stories that were judged
BRIEF for a particular event; those stories may be used (along
with the knowledge that it was judged BRIEF). The test set is
always the collection minus theNt = 16 training data.

Evaluations may be averaged across events withinNt values.
It is not particularly meaningful to average acrossNt values.
Results are reported using the standard TDT evaluation mea-
sures and the Detection Error Tradeoff curves.

4.6. Evaluation results

Basic results Table 5 lists the reported results for several of
the runs from the various sites. These report the exact evalu-
ation of error rates at the thresholds chosen by the sites, av-
eraged across all events, atNt = 4 (averaging is by pooling
all the results), but evaluated using theNt = 16 test set. The
table shows that the sites are able to generate results that vary
widely in their error rates. The preferred run from UMass is

8Only stories that are judged YES count; those judged BRIEF do not
count as part of the 16, nor as part of the test set.



nonRF-comb. Comparing it to the run from the other sites
shows dramatic differences in miss rates. The UMass and
Dragon runs have similar false alarm rates (the 0.02% differ-
ence is the difference between 4 and 7 false alarms per event
on average). CMU’s substantially lower miss rate comes at
the expense of a much larger false alarm rate.

These results are not particularly surprising. CMU tuned its
decision points on the false alarm/miss tradeoff based upon
the F1 measure that attempts to balance recall and precision
values. UMass, on the other hand, tuned its approach using
average precision numbers. The effect is clear in the numbers,
where UMass achieves very high precision for the task, but
CMU attains a better balance between the two.

DET curves Figure 5 shows the DET curves for three sam-
ple runs, one from each site. To make some comparison
possible, only theNt = 4 run is given for each. A single
point is plotted on the curve to represent the specific detec-
tion error tradeoff made by the threshold values each system
chose. The detached point is associated with the CMU deci-
sion tree approach: this is the result of a confidence threshold
that does not entirely conform to the YES/NO decisions made
for tracking.

The UMass RF2 run and the Dragon run are very similar in
effectiveness. The graph shows onlyNt = 4, but when allNt

values are plotted, the UMass run turns out to be the quickest
approach to converge to “good” values asNt increases. In
fact, the use of additional training stories appears toharm
the overall tradeoff between the errors. UMass hypothesizes
that the stability is a result of using noun phrases as features.
Dragon’s event models did not work as well with very small
values ofNt

The UMass RF run performs less well, primarily because it
uses a small number of features. It is shown to make it clear
that minor variations in the query formation process can result
in substantial differences in effectiveness.

The CMU k-NN run is fairly insensitive toNt at low false
alarm rates, but when the miss rate drops below 10%, the
training instances become more and more important. This re-
sult is not surprising, because as the size of the neighborhood
needed to match grows (in order to reduce the miss rate), it
is very likely that mismatches will occur and the supporting
evidence of other training examples will help prevent that. (It
is more surprising that UMass’s run does not degrade in this
fashion, than that CMU’s does.)

The CMU decision tree approach results in an unusual DET
curve because its decisions result in a very small number of
confidence scores. When the curve makes huge jumps to the
right, that indicates a large number of stories with the same
confidence value: when the threshold hits that point, all sto-
ries at that value get included and the false alarm rate leaps.
The decision tree approach is tuned to a specific point on the

Nt value
1 2 4 8 16

Dragon -55% -26% – +12% +40%
CMU, Dtree -90% -30% – +12% +15%
CMU, kNN -25% -9% – +11% +32%
UMass -39% -5% – +5% +5%

Table 6: Shows changes in pooledF1 measure for several
systems asNt varies, withNt = 4 as the baseline. Actual
effectiveness numbers forNt = 4 are reported in Table 5.

curve: here, the leftmost knee at about 0.1% false alarm rate
was the goal.

The DET curves also show the tradeoffs that each site made
for selecting a threshold for YES/NO decisions. UMass and
Dragon both show decision points in the extreme upper left
of the curves, reflecting an emphasis on precision or low false
alarms. CMU, on the other hand, selected points much closer
to the middle of the graph, illustrating their goal of balancing
recall and precision.

Varying Values of Nt The results presented above are at
a single value ofNt (i.e., four). That limited presentation
simplifies some points of comparison, but also ignores the in-
teresting question of how the number of training stories (Nt)
affects performance. Rather than present DET curves for ev-
ery run discussed in the previous section, we will consider
just the increase in effectiveness each system achieves asNt

changes.

Table 6 shows the impact that varyingNt has on the effec-
tiveness of the systems, as measured by pooled values ofF1,
a measure that balances recall and precision. Only a few
of the systems made an effort to optimize forF1 values, so
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Figure 6: Graph of data in Table 6, showing impact of various
values ofNt on a pooledF1 measure for several systems.
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Figure 5: DET curve for sample tracking runs from each site. All runs were performed withNt = 4 training stories, and
evaluated atNt = 4.

the actual effectiveness numbers are less important than the
changes that varyingNt causes. For that reason, only percent
changes from theNt = 4 value are reported (Table 5 reports
the baseline effectiveness for thatNt value for those who are
concerned).

It is clear from the figure that the decision tree approach is ex-
tremely sensitive to the amount of training data. AtNt = 1,
it has very poor effectiveness, but it learns rapidly, with only
modest gains after four training instances. The Dragon ap-
proach and the kNN approach both show more consistent
gains with each additional training example, though Dragon’s
approach appears to continue to benefit from learning the
most. The UMass approach stands out as the most stable after
Nt = 2 training instances: it learns a good event representa-
tion very rapidly and gains almost nothing in effectiveness
beyond that point.

4.7. Indirect Evaluation of Segmentation

Figure 7 shows a comparison of a tracking run done with ac-
tual TDT stories and one with stories generated by a segmen-
tation run. The runs were both done by Dragon, though are
based on an earlier version of their tracker than that presented
in Figure 5, so the baseline performance is slightly lower.

The two runs are nearly identical, except that the segmented
corpus has noticeably degraded performance below a false

alarm rate of 0.04% and above a rate of roughly 15%. It
shows a modest loss in effectiveness in the 2-15% range.
Another indirect evaluation done by UMass (not presented
here) showed a similar effect, except that the degradation was
slightly larger and consistent everywhere except in the 10-
20% false alarm rate were the two runs were almost identical.

Those two sets of runs suggest that segmentation of the qual-
ity reported in Section has only a modest impact on tracking
effectiveness.

4.8. Speech-Recognized Audio Transcripts

The tracking methods developed and discussed above worked
relatively well for accurate transcripts and newswire stories:
transcribed CNN and Reuters, respectively. However, can
tracking also be performed on a much noisier channel, such as
the automatically-recognized audio track of broadcast news?
If so, at what price in accuracy? In order to investigate these
questions the CMU Informedia group provided TDT with
about 1,000 CNN news stories, including their close cap-
tions and their speech-recognized audio. Speech recognition
was performed with the SPHINX-II system, which generates
about 50% word accuracy for raw broadcast news. The low
accuracy of CSR is due in part to the quality of the news audio
(often there is background interference: music, noise, other
voices) and a significant number of out-of-vocabulary words.
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Figure 7: DET curves for an early Dragon tracking run using true story boundaries compared to the same run using calculated
segment boundaries.

One event, the crash of TWA flight 800, was heavily repre-
sented in this small corpus, and was used for the preliminary
investigation. All the TWA-800 events were hand-labeled by
Informedia, and made available to the TDT research groups.
CMU tried both kNN and dtrees on close-captions and speech
data. Dragon (with less preparation time than CMU) also
tried their trackers, producing the following summary results,
as measured by F1 micro-average acrossNt values.

Classifier CC transcript CSR Output
D-tree 0.34 0.20
kNN 0.31 0.21
Dragon 0.29 0.08

These results indicate a drop in accuracy from perfect tran-
scripts to imperfect close captions, and a further drop in ac-
curacy to speech recognized audio. However, tracking still
works under conditions of 50% error rates. This is encourag-
ing as speech recognition accuracy on broadcast news will
only improve, and tracking technology will also improve.
Moreover, the latter may be tunable to different expected
noise levels in the input channel. These results are quite pre-
liminary, especially given the small data set and single-event
tracking.

4.9. Analysis and Conclusions

The tracking task is difficult to analyze because it is some-
what vaguely stated. There was no preference specified for
minimizing misses or false alarms, so it was difficult for any
of the sites to tune their systems appropriately. (The DET
curve shows a tradeoff for a particular tracking algorithm not
across algorithms.)

For this task, the events had an average of 54 stories that could
have been tracked, and an average of 8377 stories that should
not have been tracked. Achieving a miss rate of 50% and a
false alarm rate of less than 0.25% would mean 27 correctly
tracked, and less than 20 incorrectly tracked.

As reported in Table 5, each of these systems falls into ap-
proximately that range, but just barely. At a miss rate of
50%, the systems achieve about 0.15%, 0.20%, and 0.05%,
meaning that on average 12, 16, or 4 uninteresting stories are
tracked in order to get 27 interesting ones. To that extent,
then, these systems are successful.

However, for low-miss (high-recall) applications, these re-
sults are less impressive. At a miss rate of 20% (43 of 54
tracked), anywhere from 42 to 320 false alarms will arise (as-
suming at least 2 training examples).

These numbers are not out of line with typical IR ranked re-



trieval tasks, though the comparison is not necessarily obvi-
ous. 50% precision at 80% recall would be quite good for a
search system, and suggests that this problem or this corpus
is simpler than basic IR.

What works The tracking task works by creating some
form of model of the event being tracked. The above experi-
ments suggest the following:

� If the event is modeled by a set of single terms (and
weights), the evidence indicates that 20-50 terms is
preferable. Smaller sets of terms provide higher preci-
sion, but do not cast a wide enough net to bring in much
relevant material. Very large sets appear to cast too wide
and undifferentiated a net, bringing in more relevant sto-
ries, but swamping it with unrelated material.

� A better set of features (e.g., noun phrases) is even more
effective at producing high quality results. UMass be-
lieves that it is the higher quality features used in its
nonRF-comb20 run that gave it superior performance.

� Combining multiple approaches to deciding that a story
should be tracked can be helpful. The evidence com-
bination applied by UMass substantially stabilized the
algorithm’s handling of very small numbers of training
stories.

� One idea addresses the problem of small event models.
To smooth an event model consisting of one story, use
that story as a query into a training database, and use
the stories retrieved as smoothing material. Given that
Dragon’s performance improves rapidly with more train-
ing examples, this might dramatically improve the be-
havior of the system at smallNt. In general, Dragon
believes that this task requires a smoothing algorithm
that aggressively preserves topic, something that is much
more suited to information retrieval techniques.

These results are consistent with IR searching results and are
not particularly surprising for that reason. However, it does
mean that methods that have helped IR are likely to help in
this task, too: for example, query expansion techniques based
on pseudo-relevance feedback may be a fruitful means of ad-
dressing the problem of tracking with a very small set of pos-
itive stories. For example, the following may be appropriate
areas to explore: (1) evidence combination beyond that ex-
plored briefly by UMass; unsupervised learning; interactive
tracking (supervised learning).

This study has shown that fairly simple techniques can
achieve very high quality results, but that substantial work
is needed to reduce the errors to manageable numbers. For-
tunately, that the TDT problem focuses on Broadcast News
and not on arbitrary forms of information, means that there is
hope that more carefully crafted approaches can improve the
tracking results substantially.

5. Conclusions

This section presents some broad conclusions that can be
drawn from the Topic Detection and Tracking pilot study. It
was not known at the start of the TDT pilot study whether
the state of the art could effectively and efficiently address
any of the TDT tasks. The conclusions below show that the
technologies applied solve large portions of the problem, but
leave substantial room—and hope—for improvement.

The success of existing approaches has two implications.
First, because quick efforts yielded good results, continued
and more concentrated work on these problems is likely to
yield even better results. Second, because the current ap-
proaches are adequate, it is possible to move forward and in-
vestigate the more complicated problems suggested by TDT:
handling of degraded text (from automatic speech recogni-
tion), differences between “topics” and “events,” building de-
scriptions of the events being tracked or detected, and so on.

General conclusions. The reporting pattern for a typical
event is a rapid onset followed by a gradual decline over pe-
riod ranging from 1 week to 4 weeks. Some events “re-ignite”
(such as Hall’s Helicopter, upon his release and homecom-
ing). A few atypical events are “sagas” with sporadic report-
ing over long periods (such as OJ’s DNA).

Segmentation conclusions.Segmentation is a tractable task
using known technologies (HMM, IR, machine learning).
This fact was not at all certain when the pilot study began.

Segmentation is possible by several methods, each of which
has strengths and weaknesses. This suggests (a) that future
work will yield improvements as different ideas are merged,
and (b) different kinds of segmentation problems can be ad-
dressed.

The tracking task shows negligible degradation when ap-
plied to segmented text rather than “correct” segmentation,
suggesting that automatic segmentation technologies may re-
quire little improvementfor this task.

Detection conclusions. Pure retrospective detection can be
performed quite reliably for most events (except OJ, etc.) by
clustering methods, with significant differences attributable
to the clustering methods used. Permitting overlapping
clusters improves performance over strict partitions, though
presents some evaluation concerns.

Online detection cannot yet be performed reliably. Whereas
the onset of some events are detected well, others (e.g., differ-
ent airline disasters) are confused with earlier similar events
and thus frequently missed. Further basic research is needed,
not just tuning or incrementally improving existing methods.

Intermediate points of detection, such as on-line with a vari-
able deferral period offer interesting intermediate solutions



between retrospective and immediate detection.9

Tracking conclusions. Tracking is basically a simpler ver-
sion of the classic Information Retrieval (IR) “filtering” task,
but one shouldnot therefore conclude that it is uninteresting
because it is already “solved”. Rather, the fact that it lies in
a slightly more restricted domain than IR deals with, means
that some more domain-specific techniques can be applied
(from IR, speech, and machine learning) to possibly give bet-
ter performance than one might expect from unrestricted ap-
proaches.

Tracking of typical events can be accomplished fairly reliably
if at least 4 instance documents are provided. Some events
can be tracked with fairly reliably with only 1 or 2 training
instances.

Different technologies for tracking (kNNs, decision trees,
probabilistic queries, language-model differentials, etc.)
show remarkably similar performance on aggregate, but sub-
stantial differences on specific events.

Degraded text conclusions. A preliminary study by CMU
and Dragon indicated that tracking with automated speech
recognition output may prove more difficult than with per-
fect transcriptions, especially with small numbers (under 4)
training instances. Results show a 50% or more drop in
effectiveness,10 suggesting that this area is ripe for further
research. Note that the TDT2 study will focus centrally on
CSR-generated text for segmentation, detection, and track-
ing.
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